3.465 \(\int \frac{\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=118 \[ -\frac{2 b \left (2 a^2-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac{b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^2 d} \]

[Out]

(-2*b*(2*a^2 - b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*(a - b)^(3/2)*(a + b)^(3/2)*d) +
ArcTanh[Sin[c + d*x]]/(a^2*d) + (b^2*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.218543, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {2802, 3001, 3770, 2659, 205} \[ -\frac{2 b \left (2 a^2-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac{b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Cos[c + d*x])^2,x]

[Out]

(-2*b*(2*a^2 - b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*(a - b)^(3/2)*(a + b)^(3/2)*d) +
ArcTanh[Sin[c + d*x]]/(a^2*d) + (b^2*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx &=\frac{b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{\left (a^2-b^2-a b \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \sec (c+d x) \, dx}{a^2}-\frac{\left (b \left (2 a^2-b^2\right )\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac{\tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac{b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (2 b \left (2 a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 \left (a^2-b^2\right ) d}\\ &=-\frac{2 b \left (2 a^2-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 (a-b)^{3/2} (a+b)^{3/2} d}+\frac{\tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac{b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.332905, size = 146, normalized size = 1.24 \[ \frac{\frac{2 b \left (b^2-2 a^2\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{3/2}}+\frac{a b^2 \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}-\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Cos[c + d*x])^2,x]

[Out]

((2*b*(-2*a^2 + b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) - Log[Cos[(c + d
*x)/2] - Sin[(c + d*x)/2]] + Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a*b^2*Sin[c + d*x])/((a - b)*(a + b)*
(a + b*Cos[c + d*x])))/(a^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.118, size = 221, normalized size = 1.9 \begin{align*} -{\frac{1}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{1}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+2\,{\frac{{b}^{2}\tan \left ( 1/2\,dx+c/2 \right ) }{da \left ({a}^{2}-{b}^{2} \right ) \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) }}-4\,{\frac{b}{d \left ( a-b \right ) \left ( a+b \right ) \sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) }+2\,{\frac{{b}^{3}}{{a}^{2}d \left ( a-b \right ) \left ( a+b \right ) \sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*cos(d*x+c))^2,x)

[Out]

-1/d/a^2*ln(tan(1/2*d*x+1/2*c)-1)+1/d/a^2*ln(tan(1/2*d*x+1/2*c)+1)+2/d*b^2/a/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan
(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)-4/d*b/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c
)*(a-b)/((a-b)*(a+b))^(1/2))+2/d*b^3/a^2/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b
)*(a+b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 5.15265, size = 1331, normalized size = 11.28 \begin{align*} \left [-\frac{{\left (2 \, a^{3} b - a b^{3} +{\left (2 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) -{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} +{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} +{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d \cos \left (d x + c\right ) +{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d\right )}}, -\frac{2 \,{\left (2 \, a^{3} b - a b^{3} +{\left (2 \, a^{2} b^{2} - b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) -{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} +{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} +{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d \cos \left (d x + c\right ) +{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/2*((2*a^3*b - a*b^3 + (2*a^2*b^2 - b^4)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 -
b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2
+ 2*a*b*cos(d*x + c) + a^2)) - (a^5 - 2*a^3*b^2 + a*b^4 + (a^4*b - 2*a^2*b^3 + b^5)*cos(d*x + c))*log(sin(d*x
+ c) + 1) + (a^5 - 2*a^3*b^2 + a*b^4 + (a^4*b - 2*a^2*b^3 + b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(a^3
*b^2 - a*b^4)*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + (a^7 - 2*a^5*b^2 + a^3*b^4)*d), -1
/2*(2*(2*a^3*b - a*b^3 + (2*a^2*b^2 - b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^
2 - b^2)*sin(d*x + c))) - (a^5 - 2*a^3*b^2 + a*b^4 + (a^4*b - 2*a^2*b^3 + b^5)*cos(d*x + c))*log(sin(d*x + c)
+ 1) + (a^5 - 2*a^3*b^2 + a*b^4 + (a^4*b - 2*a^2*b^3 + b^5)*cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(a^3*b^2
- a*b^4)*sin(d*x + c))/((a^6*b - 2*a^4*b^3 + a^2*b^5)*d*cos(d*x + c) + (a^7 - 2*a^5*b^2 + a^3*b^4)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (a + b \cos{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)/(a + b*cos(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.36417, size = 267, normalized size = 2.26 \begin{align*} \frac{\frac{2 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{3} - a b^{2}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}} - \frac{2 \,{\left (2 \, a^{2} b - b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - a^{2} b^{2}\right )} \sqrt{a^{2} - b^{2}}} + \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

(2*b^2*tan(1/2*d*x + 1/2*c)/((a^3 - a*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)) - 2*
(2*a^2*b - b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*
d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^4 - a^2*b^2)*sqrt(a^2 - b^2)) + log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - l
og(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2)/d